(a) Starting with the identity

(b)
Let's prove the identity

** A. ** ** B. ** ** C. ** ** D. ** None of the above

(c) We can use the Pythagorean Identity to simplify the previous equation. What does doing so result in?

** A. ** ** B. ** ** C. ** ** D. ** ** E. ** ** F. ** None of the above

(d) Using the definition of

** A. ** ** B. ** ** C. ** ** D. ** ** E. ** ** F. ** ** G. ** None of the above

(e) The previous simplifies to...

** A. ** ** B. ** ** C. ** ** D. ** ** E. ** ** F. ** ** G. ** None of the above

(f) How can we finish the proof?

** A. ** This equation is only one off from the Pythagorean Identity, so we can apply that here.** B. ** The equation is true because both sides are identical.** C. ** This equation is the negative of the identity we proved in part (a)** D. ** This equation is true by the definition of the cotangent and cosecant functions.** E. ** Add one to both sides to obtain the identity we proved in part (a).** F. ** None of the above